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The paper considers a modified spatially homogeneous Boltzmann equation for
Fermi–Dirac particles (BFD). We prove that for the BFD equation there are
only two classes of equilibria: the first ones are Fermi–Dirac distributions, the
second ones are characteristic functions of the Euclidean balls, and they can be
simply classified in terms of temperatures: T > 2

5 TF and T=2
5 TF, where TF

denotes the Fermi temperature. In general we show that the L.-bound 0 [ f [

1/e derived from the equation for solutions implies the temperature inequality
T \ 2

5 TF, and if T > 2
5 TF, then f trend towards Fermi–Dirac distributions; if

T=2
5 TF, then f are the second equilibria. In order to study the long-time

behavior, we also prove the conservation of energy and the entropy identity,
and establish the moment production estimates for hard potentials.

KEY WORDS: Boltzmann equation for Fermi–Dirac particles; moment pro-
duction estimate; entropy; classification of equilibria; temperature inequality.

1. INTRODUCTION

Quantum modifications of the Boltzmann equation for Fermi–Dirac par-
ticles and for Bose–Eintein particles had been given sixty years ago (7) in
order to study time-evolution of gases of the particles. Because of taking
the quantum effects into account, the modified Boltzmann equations
possess strong nonlinear structures that particularly make the investigation
of long-time behavior of solutions more difficult. (9, 12, 14) Results obtained so
far are rather incomplete even for spatially homogeneous equations.



In this paper we study the spatially homogeneous Boltzmann equation
modified for Fermi–Dirac particles. According to ref. 7, the equation is
given by

“

“t
f(v, t)=FF

R3×S2
B(v−vg, w)[fŒf

−

g(1− ef)(1− efg)

−ffg(1− efŒ)(1− ef −g)] dw dvg, (BFD)

where e=(hm)
3/g, h is the Planck’s constant, m and g are the mass and the

‘‘statistical weight’’ of a particle. The solutions f are velocity distribution
functions (or the particle number densities). The right-hand side of Eq. (BFD)
is the so-called collision integral, which describes the rate of change of f
due to a binary collision. The function B(z, w) is the collision kernel which
is a nonnegative Borel function of |z|, |Oz, wP| only. In this paper the kernel
is mainly taken for the inverse power potentials (with angular cut-off) and
for the hard sphere model, i.e., the kernel B is given by (4)

B(z, w)=b(h) |z|b, −3 < b [ 1 (1.1)

where h=arc cos(|Oz, wP|/|z|), b(h) is strictly positive in the interval
(0, p/2) and satisfies the angular-cutoff assumption:

A0 :=4p F
p/2

0
sin(h) b(h) dh <.. (1.2)

The exponent b is determined by potentials of intermolecular forces,
i.e., the soft potentials (−3 < b < 0), the Maxwell model (b=0) and the
hard potentials (0 < b [ 1, including the hard sphere model: b=1, b(h)=
const. cos h). Notations fg, fŒ and f −g are abbreviations of the same
function f in different velocity variables, i.e., f=f(v, · ), fg=f(vg, · ), fŒ=
f(vŒ, · ), f −g=f(v

−

g, · ), where v, vg and vŒ, v −g are velocities of two particles
before and after their collisions respectively, and they have the following
relations which are frequently used in the change of integral variables:

vŒ=v−Ov−vg, wP w, v −g=vg+Ov−vg, wP w, w ¥ S2

vŒ+v −g=v+vg, |vŒ|2+|v −g |
2=|v|2+|vg |2,

|OvŒ−v −g, wP|=|Ov−vg, wP|, |vŒ−v −g |=|v−vg |.

In Eq. (BFD), the sign of the factor 1− ef is the most important:
A statistical description for the BFD model given in ref. 7 (based on the
Pauli exclusion principle) implies that the factor 1− ef, as a ratio, should
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be nonnegative. This implies that solutions of Eq. (BFD) should be
bounded: 0 [ f [ 1/e on R3×[0,.).

As usual, we introduce the subclasses of L1(R3):

L1s (R
3)=3f : ||f||L1s — F

R3
|f(v)|(1+|v|2) s/2 dv <.4 , s \ 0

and denote ||f||L1=||f||L10 . Here f are real or complex valued measurable
functions.

Let Q(f)(v, t) :=Q(f( · , t))(v) be the collision integral in Eq. (BFD),
i.e.,

Q(f)(v)=Q+(f)(v)−Q−(f)(v),

Q+(f)(v)=FF
R3×S2

B(v−vg, w) fŒf
−

g(1− ef)(1− efg) dw dvg,

Q−(f)(v)=FF
R3×S2

B(v−vg, w) ffg(1− efŒ)(1− ef −g) dw dvg.

It is easy to see that if the kernel B(z, w) is given (or bounded from above)
by (1.1) with (1.2), thenQ ±(f) ¥ L.loc([0,.); L

1
1(R

3)) for allf ¥ L.loc([0,.);
L12(R

3)) satisfying 0 [ f [ 1/e.

Solutions of Eq. (BFD). Suppose the kernel B is given (or bounded
from above) by (1.1) with (1.2). Given an initial datum f0 ¥ L

1
2(R

3) satis-
fying 0 [ f0 [ 1/e. We say that a function f is a mild solution of Eq. (BFD)
on R3×[0,.) with f|t=0=f0 if f is measurable in both variables (v, t) ¥
R3×[0,.) and satisfies the following (i), (ii):

(i) f ¥ L.loc([0,.); L
1
2(R

3)) and 0 [ f [ 1/e on R3×[0,.).

(ii) There is a null set Z … R3 such that for all v ¥ R30Z and all
t ¥ [0,.)

f(v, t)=f0(v)+F
t

0
Q(f)(v, y) dy.

Applying Fubini’s theorem, it is easily shown that if, instead of (ii),
f satisfies

f(v, t)=f0(v)+F
t

0
Q(f)(v, y) dy, t ¥ [0,.), v ¥ R30Zt, mes(Zt)=0,
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then f can be modified on v-null sets such that the modification of f satis-
fies (ii). In this sense, we do not distinguish between f and its modifications
on v-null sets. In this paper, a function f is said to be a solution of
Eq. (BFD) always means that f is a mild solution of Eq. (BFD).

A solution will be briefly called a conservative solution if it conserves
the mass, momentum and energy, i.e., the equalities of the five moments

F
R3
f(v, t) k(v) dv=F

R3
f0(v) k(v) dv, k(v)=1, v1, v2, v3, |v|2

hold for all t ¥ [0,.). Here vi are components of v. It is easily seen that for
any solution f of Eq. (BFD), we have Q ±(f) ¥ L.loc([0,.); L

1
1(R

3)) which
implies that f always conserves the mass and momentum.

Entropy used in this paper for the BFD model is taken as

S(f)=
1
e
F
R3
[−(1− ef) log(1− ef)− ef log(ef)] dv (1.3)

which is always finite for solutions of Eq. (BFD). Since 0 [ f [ 1/e, the
entropy (1.3) has the advantage that the integrands −(1− ef) log(1− ef)
and − ef log(ef) are both nonnegative. The corresponding entropy iden-
tity is given by

S(f(t))=S(f0)+F
t

0
e(f(y)) dy, t \ 0 (1.4)

where

e(f)=1
4 FFF

R3×R3×S2
B(v−vg, w)

×C(fŒf −g(1− ef)(1− efg) , ffg(1− efŒ)(1− ef −g)) dw dvg dv,

C(a, b)=˛
(a−b) log(a/b), a > 0, b > 0;

+., a > 0, b=0 or a=0, b > 0;

0, a=b=0.

(1.5)

Here and below we denote f(t)=f( · , t).
An equilibrium of Eq. (BFD) is defined to be a time-independent

solution of the equation. By entropy identity (1.4) (for B( · , · ) > 0 a.e.), this
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is equivalent to say that an equilibrium of Eq. (BFD) is defined to be a
solution of the following equation

fŒf −g(1− ef)(1− efg)=f fg(1− efŒ)(1− ef −g) a.e. on R3×R3×S2

(1.6)
together with the physical conditions

f ¥ L1(R3), ||f||L10 ] 0 and 0 [ f [ 1/e on R3. (1.7)

In our derivation, we often assume that e=1 in order to simplify
notations. In fact, by multiplying e to both sides of Eq. (BFD) one sees that
in Eq. (BFD) the triple (f, B, e) is equivalent to the triple (f̃, B̃, 1) with
f̃=ef, B̃=(1/e) B.

The paper is organized as follows. In Section 2, we give some proper-
ties of collision integrals. In Section 3 we prove conservation of energy,
entropy identity, and give moment production estimates. For spatially
inhomogeneous solutions of BFD, the conservation of energy and entropy
identity were proven in ref. 9 under the cut-off condition: B ¥ L1(R3×S2).
Uniqueness of conservative solutions of Eq. (BFD) remains unknown for
hard potentials. Section 4 gives the classification of equilibria for the BFD
model. According to S(f) > 0 (or T > 2

5 TF) and S(f)=0 (or T=2
5 TF),

equilibria of Eq. (BFD) are classified to Fermi–Dirac distributions (see
(4.5)) and characteristic functions of Euclidean balls respectively. In
Section 5 we show that it is the L.-bound, 0 [ f [ 1/e, that makes the
temperatures of the gases can not be very low in comparison with the rele-
vant Fermi temperatures TF: the inequality T \ 2

5 TF holds for all conserva-
tive solutions of Eq. (BFD). And we prove that a conservative solution of
Eq. (BFD) can only trend towards a Fermi–Dirac distribution unless T=
2
5 TF which determines that the solution is a second equilibrium.

2. SOME PROPERTIES OF COLLISION INTEGRALS

Lemma 1. Let w(t) and Y(r) be nonnegative Borel functions on
[0, 1] and [0,.) respectively. Let W(z, w)=w(|z|−1 |Oz, wP|). Then for
any nonnegative measurable function f on R3 and for all v ¥ R3

FF
R3×S2

W(v−vg, w) Y(|v−vg |) f(vŒ) dvg dw

=4p F
p/2

0

sin(h) w(cos h)
cos3 h
3F

R3
Y 1 |v−vg |

cos h
2 f(vg) dvg 4 dh, (2.1)
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FF
R3×S2

W(v−vg, w) Y(|v−vg |) f(v
−

g) dvg dw

=4p F
p/2

0

sin(h) w(cos h)
sin3 h
3F

R3
Y 1 |v−vg |

sin h
2 f(vg) dvg 4 dh. (2.2)

Proof. We prove the second equality. The first one is relatively easy.
To prove (2.2), we need the following equality which can be easily proven
using a spherical coordinate transformation:

F
S2
w(|Os, wP|) j 1 s−Os, wP w

`1−Os, wP2
2 dw

=2 F
S2

Os, wP

`1−Os, wP2
w(`1−Os, wP2 ) j(w) 1{Os, wP > 0} dw, -s ¥ S2

(2.3)

where j(w) is a nonnegative measurable function on S2 with respect to the
Lebesgue spherical measure dw.

Making changes of variable vg=v+rs, r=r/`1−Os, wP2 (w being
fixed), and applying (2.3) (with different w( · )) deduce that the left-hand
side of (2.2) is equal to

F
.

0
r2 3FF

S2×S2

w(|Os, wP|)

(`1−Os, wP2 )3
Y 1 r

`1−Os, wP2
2

×f 1v+r 1 s−Os, wP w

`1−Os, wP2
22 dw ds4 dr

=2 F
.

0
r2 3FF

S2×S2

Os, wP w(`1−Os, wP2 )

`1−Os, wP2 Os, wP3

×Y 1 r

Os, wP
2 f(v+rw) 1Os, wP > 0 dw ds4 dr

=4p F
p/2

0

cos(h) w(sin h)
cos3 h
3F.

0
F
S2

r2 Y 1 r

cos h
2 f(v+rw) dw dr4 dh

=the right-hand side of (2.2). L

Lemma 2. Let B be given (or bounded from above) by (1.1) with
(1.2). Let k \ 0 and f ¥ L1k+b(R

3) satisfy 0 [ f [ 1/e.
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(a) If 0 [ b [ 1, then for all h1 ¥ (0, p/4] and all v ¥ R3

e FF
R3×S2

B(v−vg, w) fŒf
−

g(1+|vg |
2)k/2 dw dvg

[ 23k+4A0 1
1

sin h1
23+b ||f||L1k+b (1+|v|2)b/2

+23k+4A(h1) ||f||L10 (1+|v|
2) (k+b)/2 (2.4)

where

A(h1)=max 34p F
h1

0
sin(h) b(h) dh, 4p F

p/2

p/2−h1
sin(h) b(h) dh4 . (2.5)

(b) If −3 < b [ 0, then for all v ¥ R3

FF
R3×S2

B(v−vg, w) fŒf
−

g dw dvg [ C1(A0, b, e)(||f||L10 )
(3+b)/3, (2.6)

FF
R3×S2

B(v−vg, w) fŒf
−

g |v−vg |
2 dw dvg [ C2(A0, b, e)(1+||f||L12 )(1+|v|

2)
(2.7)

where the constants Ci(A0, b, e) depend only on A0, b and e.

Proof. We can assume that B is given by (1.1) with (1.2).

(a) Denote ms(v)=(1+|v|2) s/2. By |vg |2 [ |vŒ|2+|v
−

g |
2 we have (mk)g [

2k/2[(mk)Œ+(mk)
−

g]. Then the left-hand side of (2.4) is less than or equal to

2k/2e FF
R3×S2

fŒf −g(mk)Œ B dw dvg+2k/2e FF
R3×S2

fŒf −g(mk)
−

g B dw dvg. (2.8)

Next, by |vŒ| [ |v −g |+|v−vg | and |v −g | [ |vŒ|+|v−vg | we have (mk)Œ [ 2k[(mk)
−

g
+|v−vg |k] and (mk)

−

g [ 2
k[(mk)Œ+|v−vg |k] which imply

(mk)Œ B [ (mk)Œ B1+2k[(mk)
−

g+|v−vg |
k] B2, (2.9)

(mk)
−

g B [ (mk)
−

g B3+2
k[(mk)Œ+|v−vg |k] B4, (2.10)

where

B1=B·1{0 [ h < p/2−h1}, B2=B·1{p/2−h1 [ h [ p/2},

B3=B·1{h1 < h [ p/2}, B4=B·1{0 [ h [ h1}
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and h=arc cos(|Ov−vg, wP|/|v−vg |). Applying Lemma 1, (2.9) and inequal-
ities

|v−vg |b [ mb · (mb)g, |v−vg |k+b [ 2k+b[mk+b+(mk+b)g],

we have

e FF
R3×S2

fŒf −g(mk)Œ B dw dvg

[ FF
R3×S2

(fmk)Œ B1 dw dvg

+2k FF
R3×S2

(fmk)
−

g B2 dw dvg+2
k FF

R3×S2
f −g |v−vg |

k B2 dw dvg

=4p F
p/2−h1

0

sin(h) b(h)
(cos h)3+b

dh F
R3
f(vg) mk(vg) |v−vg |b dvg

+2k4p F
p/2

p/2−h1

sin(h) b(h)
(sin h)3+b

dh F
R3
f(vg) mk(vg) |v−vg |b dvg

+2k4p F
p/2

p/2−h1

sin(h) b(h)
(sin h)3+k+b

dh F
R3
f(vg) |v−vg |k+b dvg

[ A0 1
1

sin h1
23+b 2 (5/2) k+3 ||f||L1k+b mb(v)+2(5/2) k+3A(h1) ||f||L10 mk+b(v).

Similarly, using (2.10) we have

e FF
R3×S2

fŒf −g(mk)
−

g B dw dvg

[ A0 1
1

sin h1
23+b 2 (5/2) k+3 ||f||L1k+b mb(v)+2(5/2) k+3A(h1) ||f||L10 mk+b(v).

Combining these with (2.8) give (2.4).

(b) Since −3 < b [ 0 and 0 [ f [ 1/e, (2.6) and (2.7) are easily
derived by splitting B=B1+B2 with h1=p/4 and using Lemma 1 together
with the following estimates (write a=−b)

F
R3
fg |v−vg |−a dvg [ C1(a, e)(||f||L10 )

(3−a)/3,

F
R3
fg |v−vg |2−a dvg [ C2(a, e)(1+||f||L12 )(1+|v|

2). L
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Lemma 3. Let Bn, B be collision kernels satisfying for all (z, w) ¥
R3×S2,

0 [ Bn(z, w) [ B(z, w), lim
nQ.
Bn(z, w)=B(z, w) (2.11)

where B is given by (1.1)–(1.2). Let {fn}
.

n=1 be a bounded sequence in
L12(R

3) 5 L.(R3) i.e., supn \ 1{||fn ||L12+||fn ||L.} <.. Suppose that fn E f
weakly in L1(R3). Then

lim
nQ.
Qn(fn) N (t)=Q(f) N (t) -t ¥ R3. (2.12).

Here Qn(fn) and Q(f) are collision integrals corresponding to kernels Bn
and B respectively ; g N(t)=>R3 g(v) e−iOt, vP dv is the Fourier transform.

Proof. Denote qt(v)=e−iOt, vP. Observe that the four-product term
ffgfŒf

−

g can be canceled from the collision integral Q(f). We have (after
suitable changes of integral variables)

Qn(fn) N (t)=C
6

j=1
QBn
j (fn)(t), t ¥ R3 (2.13)

where Q{ · }
j ( · ) are defined by

QB
1 (f)(t)=FF

R3×R3
f(v) f(vg) 1F

S2
B(v−vg, w) qt(vŒ) dw2 dvg dv,

QB
2 (f)(t)=−FF

R3×R3
(fqt)(v) f(vg) 1F

S2
B(v−vg, w) dw2 dvg dv,

QB
3 (f)(t)=−e F

R3
(fqt)(v) Q+(f, f)(v) dv,

QB
4 (f)(t)=−e F

R3
f(v) qt(−v) Q+(fqt, fqt)(v) dv,

QB
5 (f)(t)=e F

R3
f(v) Q+(fqt, f)(v) dv,

QB
6 (f)(t)=e F

R3
f(v) Q+(f, fqt)(v) dv,
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and Q+( · , · ) is the usual ‘‘gain’’ term of the Boltzmann’s collision operator:

Q+(f, g)(v)=FF
R3×S2

B(v−vg, w) f(vŒ) g(v
−

g) dw dvg.

It should be noted that for QB
4 (f)(t) we have used the following

decomposition:

qt(vg)=qt(−v) qt(vŒ) qt(v
−

g).

From the structures of QB
j (f) we obtain the following convergence:

lim
nQ.

QBn
j (fn)(t)=QB

j (f)(t), t ¥ R3, j=1, 2,..., 6. (2.14)

In fact, (2.14) is obvious for j=1, 2; for j=3, 4, 5, 6, (2.14) is a conse-
quence of a well-known result of P. L. Lions about the compactness of
the gain term Q+(f, g). (11, 12) Therefore (2.12) follows from (2.13) and
(2.14). L

3. CONSERVATION OF ENERGY, ENTROPY IDENTITY, AND

MOMENT PRODUCTION ESTIMATES

For completeness, we first give here a short proof for the existence
and uniqueness of conservative solutions of Eq. (BFD) in the case of non-
hard potentials: B(z, w) [ b(h) |z|b, −3 < b [ 0 where b(h) satisfies (1.2).
Suppose e=1. Given f0 ¥ L

1
2(R

3) with 0 [ f0 [ 1. For any d > 0, let Bd be
the collection of measurable functions f ¥ L.([0, d]; L12(R

3)) satisfying ||f||d
:=supt ¥ [0, d] ||f(t)||L12 [ 2 ||f0 ||L12 . Denote aNb=min {a, b}. Let J(f)(v, t)=
f0(v)+> t0 Q(|f|N1)(v, y) dy. By Lemma 2 Part(b), there is a small d > 0
which depends only on A0, b and ||f0 ||L12 , such that J is a contraction
mapping from the complete metric space (Bd, || · − · ||d) into itself. Thus there
exists a unique f ¥Bd such that ||f−J(f)||d=0. After a modification on
v-null sets, there is a null set Zd … R3 such that f(v, t)=J(f)(v, t) for all
t ¥ [0, d] and all v ¥ R30Zd. Next, we have (denote (y)+=max{y, 0})

(−f(v, t))+[ F
t

0
Q−(|f|N1)(v, y) 1{f(v, y) < 0} dy, t ¥ [0, d], v ¥ R30Zd

and so by Gronwall lemma we obtain (−f(v, t))+=0. Also, we have

(f(v, t)−1)+[ F
t

0
Q+(|f|N1)(v, y) 1{f(v, y) > 1} dy=0.
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Therefore 0 [ f [ 1 on (R30Zd)×[0, d]. After modifications on v-null
sets, f is a unique conservative solution of Eq. (BED) on R3×[0, d]. By
conservation of mass and energy, we have ||f(d)||L12=||f0 ||L12 . Thus with
the same d > 0 and replacing the initial f0 by f( · , d), f( · , 2d),..., respec-
tively, the solution f can be inductively extended to all intervals [d, 2d],
[2d, 3d],..., and the extended function f is a unique conservative solution
of Eq. (BFD) on R3×[0,.). Existence for hard potentials follows from
this result (with b=0) and a weak stability property (see Proposition 1 and
Theorem 2 below).

Theorem 1. Suppose the kernel B is given (or bounded from above)
by (1.1) with (1.2). Let f0 ¥ L

1
2(R

3) satisfy 0 [ f0 [ 1/e, and let f be any
solution of Eq. (BFD) with f|t=0=f0. Then

(1) If −3 < b [ 0, or, if 0 < b [ 1 and >R3f(v, t) |v|2 dv [ >R3f0(v)
|v|2 dv for all t \ 0, then f conserves the energy and therefore f is a con-
servative solution.

(2) The entropy identity (1.4) does actually hold. Moreover if
f ¥ L.([0,.); L12(R

3)), then supt \ 0 S(f(t)) <..

Proof. Suppose e=1. For −3 < b [ 0, we have proved in above
that the solution is unique and conserves the energy. For 0 < b [ 1, our
proof for conservation of energy is completely the same to that for the
original Boltzmann equation, (13) so we omit it here. Now we prove the
entropy identity (1.4). First of all, the entropy S(f(t)) is finite for all t \ 0.
In fact for any g ¥ L12(R

3) with 0 [ g [ 1 we have

(1−g) |log(1−g)|+g |log g| [ g(1+|v|2)+e−(1/2) |v|
2
, v ¥ R3. (3.1)

This also implies that if f ¥ L.([0,.); L12(R
3)), then supt ¥ [0,.) S(f(t))

<.. Next, let f(v)=e−|v|, fn(v)=(1/n) f(v) (n ¥ N, the set of positive
integers), and let

Yn(f)=−(1−f+fn) log(1−f+fn)−(f+fn) log(f+fn),

Sn(f(t))=F
R3

Yn(f)(v, t) dv.

It is easily shown that for all n ¥ N,

|Yn(f)(v, t)| [ 3[f(v, t)+f(v)](1+|v|2)+e−(1/2) |v|
2
.
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This gives limnQ. Sn(f(t))=S(f(t)) by dominated convergence theorem.
Since fn(v) > 0 and tW f(v, t) is absolutely continuous, we have for all
v ¥ R30Z (mes(Z)=0)

Yn(f)(v, t)=Yn(f0)(v)−F
t

0
Q(f)(v, y)

× log 1 f(v, y)+fn(v)
1−f(v, y)+fn(v)

2 dy, t \ 0.

Next, we have, for some constants Cn > 0, |log[(f+fn)/(1−f+fn)]| [
Cn(1+|v|). This implies that Q ±(f) log[(f+fn)/(1−f+fn)] ¥ L1(R3×
[0, t1]) for all t1 > 0. Thus by classical derivation (5, 20) we obtain

Sn(f(t))=Sn(f0)+F
t

0
en(f(y)) dy (3.2)

where

en(f(y))=
1
4
F FF

R3×R3×S2
B(v−vg, w) Cn(f)(v, vg, w, y) dw dvg dv,

Cn(f)(v, vg, w, y)=[fŒf
−

g(1−f)(1−fg)−ffg(1−fŒ)(1−f
−

g)]

× log 1 (f+fn)Œ(f+fn)
−

g (1−f+fn)(1−f+fn)g
(f+fn)(f+fn)g (1−f+fn)Œ (1−f+fn)

−

g

2 .

Let

e+n (f(y))=
1
4 FFF

R3×R3×S2
B(v−vg, w)[Cn(f)(v, vg, w, y)]+ dw dvg dv,

e−n (f(y))=
1
4 FFF

R3×R3×S2
B(v−vg, w)[−Cn(f)(v, vg, w, y)]+ dw dvg dv.

Then (3.2) is written

F
t

0
e+n (f(y)) dy=Sn(f(t))−Sn(f0)+F

t

0
e−n (f(y)) dy. (3.3)

It is easily seen that for all (v, vg, w, y) ¥ R3×R3×S2×[0,.)

lim
nQ.
[Cn(f)(v, vg, w, y)]+=C(fŒf −g(1−f)(1−fg), ffg(1−fŒ)(1−f

−

g)),

lim
nQ.
[−Cn(f)(v, vg, w, y)]+=0
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where C( · , · ) is the function (1.5). Moreover applying the elementary
inequalities

[(a−b) log(a1/b1)]+[ C(a, b)+a1−a+b1−b,

[−(a−b) log(a1/b1)]+[ a1−a+b1−b

for 0 [ a < a1, 0 [ b < b1, we obtain the following controls:

[Cn(f)(v, vg, w, y)]+[ C(fŒf −g(1−f)(1−fg) , ffg(1−fŒ)(1−f
−

g))

+4(f+f)(f+f)g+4(f+f)Œ (f+f) −g ,

[−Cn(f)(v, vg, w, y)]+[ 4(f+f)(f+f)g+4(f+f)Œ (f+f) −g .

Thus by dominated convergence theorem we obtain for all t \ 0

lim
nQ.

F
t

0
e−n (f(y)) dy=0,

and (by (3.3))

lim
nQ.

F
t

0
e+n (f(y)) dy=S(f(t))−S(f0). (3.4)

By Fatou’s Lemma, (3.4) gives

F
t

0
e(f(y)) dy [ S(f(t))−S(f0) <. -t ¥ [0,.). (3.5)

This integrability together with (3.4) and dominated convergence imply
that the equality sign in (3.5) holds for all t \ 0, i.e., f satisfies the entropy
identity (1.4). L

To obtain moment production estimates we need a weak stability of
the BFD model.

Proposition 1. Let Bn, B be collision kernels satisfying (2.11) and B
is given by (1.1)–(1.2). Given initial data fn0, f0 satisfying 0 [ fn0, f0 [ 1/e,
fn0, f0 ¥ L

1
2(R

3) and limnQ. ||f
n
0−f0 ||L12=0. Let fn be conservative solu-

tions of Eq. (BFD) corresponding to kernels Bn and fn |t=0=f
n
0. Then

there exist a subsequence {fnk}.k=1 and a conservative solution f of
Eq. (BFD) corresponding to the kernel B and f|t=0=f0, such that

fnk( · , t)E f( · , t) weakly in L1(R3) (kQ.) -t ¥ [0,.).

Modified Boltzmann Equation for Fermi–Dirac Particles 365



Proof. We have, for some constant C depending only on A0, b, e and
supn \ 1 ||f

n
0 ||L12 ,

sup
n \ 1
||fn(t1)−fn(t2)||L10 [ C |t1−t2 |, t1, t2 ¥ [0,.).

Since {fn( · , t)}.n=1 is weakly compact in L1(R3) for all t \ 0, the standard
diagonal process and the condition limnQ. ||f

n
0−f0 ||L12=0 deduce that there

exists a common subsequence, still denote it by {fn( · , t)}, such that for every
t ¥ [0,.), fn( · , t) converges weakly in L1(R3) to some f( · , t) ¥ L1(R3)
(nQ.) and f is measurable on R3×[0,.) satisfying 0 [ f [ 1, f|t=0=f0,
||f(t)||L10=||f0 ||L10 and >R3f(v, t) |v|2 dv [ >R3f0(v) |v|2 dv for all t \ 0. To
prove that f is a solution of Eq. (BFD), we consider the Fourier transform:
Let J(f)(v, t)=f0(v)+> t0 Q(f)(v, y) dy.We have for all t ¥ R3

J(f)( · , t) N (t)=f0 N(t)+F
t

0
Q(f)( · , y) N (t) dy,

fn( · , t) N (t)=fn0
N(t)+F

t

0
Qn(fn)( · , y) N (t) dy.

Since supn \ 1, t \ 0 ||fn(t)||L12=supn \ 1 ||f
n
0 ||L12 <., it is easily seen from the

representation (2.13) and from Lemma 2 (with k=0, h1=p/4 in case
0 < b [ 1) that supn \ 1, y \ 0 |Qn(fn)( · , y) N (t)| <. for all t ¥ R3. Thus by
Lemma 3 we have

f( · , t) N (t)=J(f)( · , t) N (t) -t \ 0, -t ¥ R3.

Therefore for all t \ 0, f(v, t)=J(f)(v, t) a.e. v ¥ R3. After modifications
on v-null sets, f is a solution of Eq. (BFD) and conserves the mass and
momentum. The conservation of energy follows from Theorem 1. L

Now we give the moment production estimates of Wennberg’s
type. (22, 13, 14)

Theorem 2. Suppose the kernel B satisfies (1.1)–(1.2) with
0 [ b [ 1. Let f0 ¥ L

1
2(R

3) satisfy 0 [ f0 [ 1/e and ||f0 ||L12 > 0. Then there
exists a conservative solution f of Eq. (BFD) with f|t=0=f0 such that

(I) If b > 0, then for any s > 2

||f(t)||L1s [
5 b
1− exp(−at)

6 (s−2)/b -t > 0
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where a > 0, b > 0 are constants depending only on b, s, ||f0 ||L10 , ||f0 ||L12 , and
on some integration of b(h). In particular, a, b do not depend on the
parameter e.

(II) If b=0 and f0 ¥ L
1
s (R

3) for some 2 < s [ 4, then f ¥ L.([0,.);
L1s (R

3)).

Proof. We first assume that f0 ¥ L
1
s (R

3) for all s \ 2. For any k ¥ N,
let Bk(z, w) — b(h)(|z|Nk)b and let fk be conservative solutions of
Eq. (BFD) corresponding to Bk(z, w) with fk |t=0=f0. Existence of the
solutions fk has been shown above since Bk(z, w) [ kbb(h). In the follow-
ing, we will use the function ms(v)=(1+|v|2) s/2. Consider fn(v)=ms(v)Nn,
n ¥ N. By the inequality |vŒ|2 [ |v|2+|vg |2 we have f −n [ 2

s/2−1[fn+fng].
This gives

||fk(t) fn ||L10 [ ||f0 ||L1s+2
s/2A0 kb ||f0 ||L10 F

t

0
||fk(y) fn ||L10 dy, t \ 0.

Thus using Gronwall lemma and then letting nQ. leads to fk ¥ L
.

loc([0,.);
L1s (R

3)) for all s > 2. Therefore using the Povzner’s inequality (see, e.g.,
ref. 5)

(ms)Œ+(ms)
−

g−ms−(ms)g [ 2 s[ms−1(m1)g+m1(ms−1)g]

we obtain

||fk(t)||L1s [ ||f0 ||L1s+2
sA0 ||f0 ||L12 F

t

0
||fk(y)||L1s dy, t \ 0

and so

||fk(t)||L1s [ ||f0 ||L1s exp{2 sA0 ||f0 ||L12 t}, t \ 0. (3.6)

By weak stability (Proposition 1), there exists a conservative solution f of
Eq. (BFD) corresponding to B with f|t=0=f0 such that for any t \ 0,
f( · , t) is an L1-weak limit of a common subsequence of {fk( · , t)}

.

k=1.
Taking the weak limit, (3.6) also holds for f and so f ¥ L.loc([0,.);
L1s (R

3)) for all s \ 2. By calculation using Lemma 2 Part (a) (with h1=
p/4), the high-moment property of f implies that Q ±(f) ¥ L.loc([0,.);
L1s (R

3)) and Q(f) ¥ Lip([0, t1]; L
1
s (R

3)) for all s \ 2 and all t1 > 0. Thus
for all s > 2, f ¥ C1([0,.); L1s (R

3)). Then, using a sharpened version of
the Povzner’s inequality (see ref. 13 and the proof therein)

(ms)Œ+(ms)
−

g−ms−(ms)g

[ 2(2 s/2−2)[ms− c(mc)g+mc(ms− c)g]−2−s−1(s−2)[o(h)] s ms
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where o(h)=min{cos h, 1− cos h}, h=arc cos(|v−vg |−1 |Ov−vg, wP|), 0 [
c [ min{s/2, 2}, s > 2, we obtain for all t \ 0

d
dt
||f(t)||L1s=F

R3
Q(f)(v, t) ms(v) dv

=
1
2
F FF

R3×R3×S2
Bffg[(ms)Œ+(ms)

−

g−ms−(ms)g] dw dvg dv

+FFF
R3×R3×S2

BeffŒf −g[(ms)Œ+(ms)
−

g−ms−(ms)g] dw dvg dv

[ 2(2 s/2−2) FFF
R3×R3×S2

Bffg ms− c(mc)g dw dvg dv

−2−s−2(s−2) FFF
R3×R3×S2

B [o(h)] s ffg ms dw dvg dv

+2(2 s/2−2) FFF
R3×R3×S2

BeffŒf −g[ms− c(mc)g

+mc(ms− c)g] dw dvg dv

[ (s−2)[2 sIs, 1(t)−2−s−2Is, 2(t)+2 sIs, 3(t)] (3.7)

where Is, j(t) (j=1, 2, 3) denote the last three integrals.

(I) b > 0. By b [ 1, we have |v−vg |b \ mb(v)−mb(vg). Choose
c=b. Since f conserves the mass and energy, these imply

Is, 1(t) [ A0 ||f0 ||L12 ||f(t)||L1s ,

Is, 2(t) \ As ||f0 ||L10 ||f(t)||L1s+b −As ||f0 ||L12 ||f(t)||L1s ,

where

As=4p F
p/2

0
sin(h) b(h)[o(h)] s dh.

Also, by Lemma 2 (2.4) (with k=b and k=s−b respectively), we have for
any h1 ¥ (0, p/4]
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Is, 3(t)=F
R3
f(1+|v|2) (s−b)/2 3e FF

R3×S2
BfŒf −g(1+|vg |

2)b/2 dw dvg 4 dv

+F
R3
f(1+|v|2)b/2 3e FF

R3×S2
BfŒf −g(1+|vg |

2) (s−b)/2 dw dvg 4 dv

[ 23s+5A0 1
1

sin h1
23+b ||f0 ||L12 ||f(t)||L1s+23s+5A(h1) ||f0 ||L10 ||f(t)||L1s+b .

Here A(h) is the continuous function (2.5). Thus by (3.7)

d
dt
||f(t)||L1s [ (s−2)[2

sA0+2−s−2As+24s+5A0(sin h1)−4] ||f0 ||L12 ||f(t)||L1s

−(s−2)[2−s−2As−24s+5A(h1)] ||f0 ||L10 ||f(t)||L1s+b .

Since A(p/4) \ 1
2 As > 0=A(0), there exists 0 < h1 < p/4 such that

2−s−2As−24s+5A(h1)=2−s−3As. Also, we have ||f(t)||L1s+b \ [||f0 ||L12]
−b/(s−2)

[||f(t)||L1s ]
1+b/(s−2) by Hölder inequality. Thus

d
dt
||f(t)||L1s [ (s−2) Cs, 1 ||f(t)||L1s −(s−2) Cs, 2[||f(t)||L1s ]

1+b/(s−2)

which implies

||f(t)||L1s [
5 bs
1− exp(−as t)

6 (s−2)/b, t > 0 (3.8)

where as=bCs, 1 > 0, bs=Cs, 1/Cs, 2 > 0 depend only on ((||f0 ||L10 )
−1, ||f0 ||L12 ,

A0, As, s, b).

(II) b=0 and 2 < s [ 4. In this case we can choose c=s/2. Then

Is, 1(t)=A0(||f(t)||L1s/2 )
2 [ A0(||f0 ||L12 )

2, Is, 2(t)=As ||f0 ||L10 ||f(t)||L1s ,

and by Lemma 2 (with k=s/2, b=0)

Is, 3(t)=2 F
R3
f(1+|v|2) s/4 3e FF

R3×S2
BfŒf −g(1+|vg |

2) s/4 dw dvg 4 dv

[ 22s+5A0 1
1

sin h1
23 (||f0 ||L12 )2+22s+5A(h1) ||f0 ||L10 ||f(t)||L1s .
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Therefore by (3.7)

d
dt
||f(t)||L1s [ (s−2)[2

s+23s+5(sin h1)−3] A0(||f0 ||L12 )
2

−(s−2)[2−s−2As−23s+5A(h1)] ||f0 ||L10 ||f(t)||L1s , t \ 0.
(3.9)

Choose 0 < h1 < p/4 such that 2−s−2As−23s+5A(h1)=2−s−3As. Then (3.9)
implies that with the constant Cs=[2 s+23s+5(sin h1)−3] A0(||f0 ||L12 )

2/
[2−s−3As ||f0 ||L10],

||f(t)||L1s [ ||f0 ||L1s+Cs, t \ 0. (3.10)

Now let f0 be given in the theorem. Let fn0(v)=f0(v) e
−(1/n) |v|2, and let

fn be conservative solutions of Eq. (BFD) obtained in the above argument
with fn |t=0=f

n
0, such that (fn, fn0) satisfy the estimates (3.8) for b > 0

and (3.10) for b=0 respectively. Since in (3.8) and (3.10) for fn the coeffi-
cients as, bs and Cs depend only on ((||fn0 ||L10 )

−1, ||fn0 ||L12 , A0, As, s, b) and are
continuous with respect to ((||fn0 ||L10 )

−1, ||fn0 ||L20 ), the conclusion of the
theorem follows by taking weak limit and applying Proposition 1. L

4. CLASSIFICATION OF EQUILIBRIA

We need the following result which gives a new characterization of the
Euclidean n-ball in terms of an equilibrium state of the BFD model.

Proposition 2. Let n \ 2, let K be a compact set in Rn with
mes(K) > 0 and satisfy

1K(v) 1K(vg) 51−1K 1
v+vg
2
+
|v−vg |
2

w2651−1K 1
v+vg
2
−
|v−vg |
2

w26=0
(4.1)

for all (v, vg, w) ¥ Rn×Rn×Sn−1. Then K is a convex body of constant
width. Moreover if n \ 3, then K is a Euclidean n-ball.

Our proof of this result is based on the following classical charac-
terization:

Theorem MSW. Let n \ 3, let K … Rn be an n-dimensional convex
body (i.e., n-dimensional compact convex set ) and let p0 be an interior
point of K with the property that for every n−1-dimensional plane P
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of Rn through p0, the intersection P 5K is an n−1-dimensional convex
body of constant width. Then K is a Euclidean n-ball.

Theorem MSW is a special version of a result of Motejano. (15) For
n=3 see also Süss (18) (under differentiability conditions) and Wegner. (21)

For a set E … Rn, let “E denote the boundary of E, and let E°=
E0“E.

Proof of Proposition 2. Step 1. Let conv(K) be the convex hull
of K. Since mes(K) > 0, conv(K) is an n-dimensional convex body. In this
step we prove that “(conv(K)) … “K. Given any v0 ¥ “(conv(K)), there
is an w ¥ Sn−1 and a supporting plane H (−)={v ¥ Rn | Ov−v0, wP=0} of
conv(K) such that

Ov−v0, wP [ 0 -v ¥ conv(K). (4.2)

ForH(−), there is a parallel supporting planeH(+)={v ¥ Rn | Ov−u0, wP=0}
of conv(K) with u0 ¥ “(conv(K)) and u0 ] v0, such that

Ov−u0, wP \ 0 -v ¥ conv(K). (4.3)

Let C be the set of all extrem points of conv(K). Then C … “K …K. Let

d=max{|u−v| | u ¥H (−) 5 conv(K), v ¥H (+) 5 conv(K)}.

For any u1 ¥H (−) 5 conv(K) and any v1 ¥H (+) 5 conv(K) satisfying
|u1−v1 |=d, it is easily seen (use (4.2), (4.3)) that u1, v1 ¥ C and thus
u1, v1 ¥K. We assert that |u1−v1 |=Ou1−v1, wP. This will prove that
v0 ¥ “K. In fact, this equality implies that d=|u1−v1 |=Ou1−v0, wP+
Ov0−v1, wP=Ov0−v1, wP [ |v0−v1 | [ d and so |v0−v1 |=d which implies
that v0 ¥ C … “K. Now suppose, to the contrary, that |u1−v1 | > Ou1−
v1, wP. Then, since u1 ¥H (−) and v1 ¥H (+), we have

7u1+v1
2
+
|u1−v1 |
2

w−v0 , w8=
1
2
|u1−v1 |−

1
2
Ou1−v1, wP > 0,

7u1+v1
2
−
|u1−v1 |
2

w−u0 , w8=
1
2
Ou1−v1, wP−

1
2
|u1−v1 | < 0.

By (4.2) and (4.3) we see that both 1
2 (u1+v1)+

1
2 |u1−v1 | w and 1

2 (u1+v1)
− 1

2 |u1−v1 | w do not belong toK. Since u1, v1 ¥K, this contradicts Eq. (4.1).

Step 2. We prove that conv(K)=K. Since conv(K) is a convex body,
it suffices to show that (conv(K))° …K. Given any x ¥ (conv(K))°. Let a ¥
conv(K) satisfy |a−x|=max {|v−x| | v ¥ conv(K)}. Let H={v ¥ Rn | Ov−x,
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a−xP=0}. Choose b ¥H 5 conv(K) such that |b−x|=max{|v−x| | v ¥H
5 conv(K)}. It is easily verified that a, b ¥ “(conv(K)) and |a+b−2x|2=
|a−x|2+|b−x|2=|a−b|2. Take w=a+b−2x

|a−b| . Then x=1
2 (a+b)−

1
2 |a−b| w.

Let y=1
2 (a+b)+

1
2 |a−b| w. Then |y−x|2=|a−b|2 > |a−x|2 and so y ¨

conv(K) therefore y ¨K. But the Step 1 shows that a, b ¥ “K …K, so by
Eq. (4.1) we must have x ¥K. This proves (conv(K))° …K.

Step 3. We prove that the convex body K has constant width. By a
characterization of convex body of constant width, (6) this is equivalent to
show that for each pair H1, H2 of parallel supporting planes of K there
exist p ¥H1 5 “K and q ¥H2 5 “K with p ] q such that the chord
[p, q] :={tp+(1−t) q | 0 [ t [ 1} is orthogonal to H1, H2, i.e., such that
(p−q)/|p−q| is a common normal vector of H1 and H2. Let H1, H2 be two
parallel supporting planes of K. Then there exist w ¥ Sn−1, p ¥H1 5 “K and
q ¥H2 5 “K with Op, wP ] Oq, wP such that H1={v ¥ Rn | Ov−p, wP=0},
H2={v ¥ Rn | Ov−q, wP=0}. We may suppose that Oq, wP < Op, wP. This
implies that

Ov−p, wP [ 0 and Ov−q, wP \ 0 -v ¥K. (4.4)

Since p, q ¥K, by Eq. (4.1) we may assume that 1
2 (p+q)+

1
2 |p−q| w ¥K.

Then using the first inequality in (4.4) we have O12 (p+q)+
1
2 |p−q| w

−p , wP [ 0 which implies that |p−q| [ Op−q, wP. Thus (p−q)/|p−q|
=w. Similarly, if 1

2 (p+q)−
1
2 |p−q| w ¥K, then using the second inequality

in (4.4) we still obtain (p−q)/|p−q|=w. Therefore K has constant width.

Step 4. Suppose n \ 3. We now prove that K is a ball. After a
translation we can assume that 0 ¥K°. In this case, by Theorem MSW
(with p0=0), we need only to show that for any n−1-dimensional sub-
space P={v ¥ Rn | Ov, e0P=0}(e0 ¥ Sn−1), the section P 5K is an n−1-
dimensional convex body of constant width. Let {e0, e1,..., en−1} be an
orthonormal basis of Rn. Define L :P Q Rn−1 by L(v)=x=(x1, x2,...,
xn−1) for v=;n−1

k=1 xkek ¥ P. Then L is a linear isometry between P and
Rn−1, and since 0 ¥K°, the set K1 :=L(P 5K) is an n−1-dimensional
convex body in Rn−1 with n−1 \ 2. Thus by the above result we need only
to prove that the set K1 satisfies Eq. (4.1) of n−1-dimensional case. For
any x, y ¥K1 and any s=(s1, s2,..., sn−1) ¥ Sn−2, let v=L−1(x), vg=
L−1(y) and w=;n−1

k=1 skek. Then v, vg ¥ P 5K, w ¥ P 5 Sn−1 and

x+y
2
±
|x−y|
2

s=L 1v+vg
2
±
|v−vg |
2

w2 .

By Eq. (4.1) for K we see that either 1
2 (x+y)+

1
2 |x−y| s ¥K1 or

1
2 (x+y)−

1
2 |x−y| s ¥K1. Thus K1 also satisfies Eq. (4.1) and therefore K1
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and, equivalently, P 5K is an n−1-dimensional convex body of constant
width. L

Now we give the classification of equilibria of Eq. (BFD).

Theorem 3. The equation (1.6) with (1.7) has only two classes of
solutions: The first ones, corresponding to S(f) > 0, are Fermi–Dirac dis-
tributions:

f(v)=Fa, b(v) :=
ae−b |v−v0|

2

1+eae−b |v−v0|
2 a.e. v ¥ R3 (4.5)

with constants a > 0, b > 0 and v0 ¥ R3. The second ones, corresponding to
S(f)=0, are characteristic functions of balls ( multiplying 1/e ):

f(v)=
1
e
1{|v−v0| [ R}, a.e. v ¥ R3. (4.6)

Proof. Suppose e=1. Let f be a solution of (1.6)–(1.7). In the
following we denote for real function j and constants c, c1, c2, R3(j > c)=
{v ¥ R3 | j(v) > c}, R3(c1 < j < c2)={v ¥ R3 | c1 < j(v) < c2}, etc.

Case 1: S(f) > 0. By our definition of S(f), this is equivalent to
mes(R3(0 < f < 1)) > 0.We now prove that in this case f is a Fermi–Dirac
distribution. Let w(t)=t3(1−t2)3/2 (0 [ t [ 1), W(z, w)=w(|z|−1| Oz, wP|).
Consider two functions

If(v)=FF
R3×S2

W(v−vg, w) f(vŒ) f(v
−

g)(1−f(vg)) dw dvg,

Jf(v)=FF
R3×S2

W(v−vg, w) f(vg)(1−f(vŒ))(1−f(v
−

g)) dw dvg

Multiplying W(v−vg, w) to both sides of equation (1.6) and then taking
integration with respect to (vg, w) we have, for a null set Z … R3,

f(v)[If(v)+Jf(v)]=If(v), v ¥ R30Z. (4.7)

The functions If,Jf possess the following properties:

(a) If g ¥ L1(R3) and 0 [ g [ 1, then

|If(v)−Ig(v)|, |Jf(v)−Jg(v)| [ 12p ||f−g||L1 -v ¥ R3. (4.8)

In particular, if f=g a.e. on R3, then If —Ig, Jf —Jg on R3.
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In fact using Lemma 1 with Y(r) — 1 we have

|If(v)−Ig(v)|, |Jf(v)−Jg(v)|

[ FF
R3×S2

W(v−vg, w)[|(f−g)(vŒ)|

+|(f−g)(v −g)|+|(f−g)(vg)|] dw dvg

[ 12p ||f−g||L1, -v ¥ R3.

(b) If, Jf are continuous on R3: Denote fh(v)=f(v+h). We have

|If(v+h)−If(v)|, |Jf(v+h)−Jf(v)| [ 12p ||fh−f||L1 -v, h ¥ R3. (4.9)

In fact we have If(v+h)=Ifh (v),Jf(v+h)=Jfh (v), so (4.9) follows
from (4.8).

(c) The set R3(If > 0) 5 R3(Jf > 0) is non-empty.
In fact, since mes(R3(0 < f < 1)) > 0, there is a Lebesgue point v of f

satisfying 0 < f(v) < 1. Let Br(v) denote an open ball with center v and
radius r > 0, and let

Lv(r)=
1

mes(Br)
F
Br(v)
|f(vg)−f(v)| dvg.

In Lemma 1, choose Y(r)=1{0 [ r < d} for d > 0. Let A=4p >p/20 sin(h)
w(cos h) dh. Then by Lemma 1 we have

: 1
mes(Bd)

FF
Bd(v)×S2

W(v−vg, w) fŒf
−

g(1−fg) dw dvg−A[f(v)]
2(1−f(v)) :

[
1

mes(Bd)
FF

R3×S2
W(v−vg, w) 1{|vg−v| < d}

×[|f(vŒ)−f(v)|+|f(v −g)−f(v)|+|f(vg)−f(v)|] dw dvg

[ 4p F
p/2

0
sin(h) w(cos h)[Lv(d cos h)+Lv(d sin h)+Lv(d)] dh

Q 0 (d Q 0)
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since Lv(r)Q 0(rQ 0). Thus for sufficiently small d > 0,

If(v) \ FF
Bd(v)×S2

W(v−vg, w) fŒf
−

g(1−fg) dw dvg

> 1
2 mes(Bd) A[f(v)]2 (1−f(v)) > 0.

Similarly, Jf(v) > 0.
Now we define g(v)=If(v)/[If(v)+Jf(v)] if If(v)+Jf(v) > 0;

g(v)=f(v) if If(v)+Jf(v)=0. Then by (4.7), g=f a.e. on R3 and there-
fore by property (a),If —Ig,Jf —Jg. We need to prove thatO :=R3(Ig > 0)
5 R3(Jg > 0)=R3. Since properties (b), (c) imply that O is open and non-
empty, we may suppose that for some d > 0, Bd(0) … O. Let l=1

2 (1+`3/2 ),
g=1

2 (`3/2−1) d, and

Od(v)={(vg, w) ¥ R3×S2 | |vg | < g, vg ] v,`1/3 < cos(h) <`2/3}

where h=arc cos(|Ov−vg, wP|/|v−vg |). By the elementary inequalities

|vŒ| [ sin(h) |v|+cos(h) |vg |, |v −g | [ cos(h) |v|+sin(h) |vg |

we see that if v ¥ Bld(0) then vg, vŒ, v
−

g ¥ Bd(0) for all (vg, w) ¥ Od(v). Since
0 < g=Ig/(Ig+Jg) < 1 on Bd(0) … O, this implies that g(vŒ) g(v −g)(1−
g(vg)) > 0, g(vg)(1−g(vŒ))(1−g(v

−

g)) > 0 for all (vg, w) ¥ Od(v). Therefore
by definition of Ig and Jg we have Ig(v) > 0,Jg(v) > 0 for all v ¥ Bld(0).
Here we have used an obvious fact that the sets Od(v) have positive
measure with respect to the measure dw dvg. Thus Bld(0) … O. Iteratively,
we obtain Blnd(0) … O, n=1, 2,..., and so O=R3. Therefore 0 < g(v) < 1
for all v ¥ R3 and g is continuous on R3. Since g=f a.e. on R3, it follows
that g satisfies Eq. (1.6) (with e=1). Thus ( g

1−g )Œ (
g

1−g )
−

g=(
g

1−g )(
g

1−g )g on
R3×R3×S2, and so by a well known result of Arkeryd (1, 5, 20) we conclude
g(v)=ae−b |v−v0|

2
/(1+ae−b |v−v0|

2
) for some constants a > 0, b > 0 and

v0 ¥ R3.

Case 2: S(f)=0. This is equivalent to mes(R3(0 < f < 1))=0. In
this case we prove that f is a characteristic function of a ball. Let E=
R3(f=1). Since 0 [ f [ 1, we have f(v)=1E(v) a.e. v ¥ R3. And in the
following we can assume that E is a Borel set. Multiplying 1E(v) to both
sides of Eq. (1.6) (for e=1) leads to a single equation

1E(v) 1E(vg)[1−1E(vŒ)][1−1E(v
−

g)]=0 a.e. (v, vg, w) ¥ R3×R3×S2.
(4.10)
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Using integration on R3×R3×S2 with suitable changes of variables we see
that the equation (4.10) is equivalent to the equation (4.1) in 3-dimension
case, i.e.,

1E(v) 1E(vg) 51−1E 1
v+vg
2
+
|v−vg |
2

w26 51−1E 1
v+vg
2
−
|v−vg |
2

w26=0
(4.11)

for a.e. (v, vg, w) ¥ R3×R3×S2. Our proof is divided into several steps.

Step 1. We first prove that the set E is essentially bounded, i.e., there
exists a null set Z0 … R3 such that E0Z0 is a bounded set. For 0 < d < 1, we
compute (changing variable r=Otz−v, wP)

4p mes(E)

\
1
2
F
S2
dz F

S2
1{|Oz, wP| \ d} dw F

.

−.
r21E(v+rw) dr

\
1
2
F
S2
dz F

S2
1{|Oz, wP| \ d} dw F

.

−.
Otz−v, wP2 |Oz, wP|

×1E(v+Otz−v, wP w) 1E(tz) dt

=F
S2
dw F

|O
vg
|vg |

, wP| \ d

1
|vg |2

Ovg−v, wP2 :7 vg
|vg |
, w8: 1E(vŒ) 1E(vg) dvg

\ d F
E

|v−vg |2

|vg |2
1F

S2
:7 v−vg
|v−vg |

, w8:
2

1E(vŒ)

×1{|O vg
|vg |
, wP| \ d} dw2 dvg, v ¥ R3. (4.12)

On the other hand, for any v, vg ¥ R3 with vg ] v, using equality (2.3) with
j(w)=1E(v

−

g) and writing

vŒ=vg+7v−vg,
s−Os, wP w

`1−Os, wP2
8 s−Os, wP w

`1−Os, wP2
, s=

v−vg
|v−vg |

we have

F
S2
|Os, wP|2 1E(vŒ) dw=F

S2
|Os, wP|`1−Os, wP2 1E(v

−

g) dw. (4.13)
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Moreover by Eq. (4.10) and Fubini’s theorem, there is a null set Z0 … R3

such that for any v ¥ E0Z0 there is a null set Z0, v such that for any vg ¥
E0Z0, v, we have (1−1E(vŒ))(1−1E(v

−

g))=0 a.e. w ¥ S2. Thus by (4.13) we
obtain for any v ¥ E0Z0 and any vg ¥ E0Z0, v

F
S2
|Os, wP|2 1E(vŒ) dw

=
1
2
F
S2
|Os, wP| [|Os, wP| 1E(vŒ)+`1−Os, wP2 1E(v

−

g)] dw

\
1
2
F
S2
|Os, wP| min{|Os, wP|,`1−Os, wP2} dw

=
4p
3
2−3/2 (4.14)

with s=(v−vg)/|v−vg |. This gives

4p
3
2−3/2 [ F

S2
:7 v−vg
|v−vg |

, w8:
2

1E(vŒ) 1{|O vg
|vg |

, wP| \ d} dw+4pd.

Choose d=3−1 2−5/2. We obtain by (4.12) that

4p mes(E) \
4p
288

F
E

|v−vg |2

|vg |2
dvg, -v ¥ E0Z0. (4.15)

Since |v−vg |2 \
1
2 |v|

2−|vg |2 and 0 <mes(E) <., (4.15) implies that the set
E0Z0 is bounded. Let Z1 be a null set such that every v ¥ E0(Z0 2 Z1) is a
density point of E0Z0, i.e., v satisfies mes((E0Z0) 5 Br(v))/mes(Br(v))Q 1
as rQ 0. Applying Fubini’s theorem it is easily seen that the set E0(Z0 2 Z1)
also satisfies the Eq. (4.10) and Eq. (4.11). These properties allow us to
assuming without loss generality that the set E is bounded and satisfies that
every point v ¥ E is a density point ofE.

Step 2. Let K=Ē be the closure of E. Then K is compact and
mes(K) > 0. Since R30K is open, it is easily verified that the set K satisfies
the Eq. (4.1) for all (v, vg, w) ¥ R3×R3×S2. Thus by Proposition 2, K is a
ball.

In the following two steps we prove that mes(K0E)=0. Before doing
these we need two equalities: Applying Fubini’s theorem to Eq. (4.10) and
Eq. (4.11) we have
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1E(v+rs)[1−1E(v+rOs, wP w)][1−1E(v+rs−rOs, wP w)]

=0 a.e. (s, w) ¥ S2×S2 (4.16)

for all v ¥ E0Z and all r ¥ [0,.)0Z (+)
v ; and

51−1E 1
v+vg
2
+
|v−vg |
2

w2651−1E 1
v+vg
2
−
|v−vg |
2

w26

=0 a.e. w ¥ S2 (4.17)

for all (v, vg) ¥ (E×E)0Z. Here Z is a null set in R3, Z (+)
v are null sets in

[0,.) that depend on v, and Z is a null set in R3×R3.

Step 3. We will prove that for any v0 ¥K°(=K0“K) and any R > 0
satisfying BR(v0) …K°,

mes(E 5 BR(v0)) \ 2−5/2mes(BR(v0)). (4.18)

First of all, since K=Ē and since every point in E is a density point of E,
it is easily seen that for any z ¥K and any r > 0 we have mes(E 5
Br(z)) > 0. Now take a fixed w0 ¥ S2. For any small 0 < d < 1

3 R, let a=v0+
(R−2d) w0, b=v0−(R−2d) w0, and let Ea=E 5 Bd(a), Eb=E 5 Bd(b).
Since a, b ¥K, we have mes(Ea) > 0, mes(Eb) > 0. Thus, as an exersise of
measure theory, the set 1

2 (Ea+Eb) :={
1
2 (v+vg) | v ¥ Ea, vg ¥ Eb} contains a

ball. Since 1
2 (Ea+Eb) …K, this implies that mes(E 5 [12 (Ea+Eb)]) > 0.

Now we need to prove that

I :=F
E

1F
R3
1Ea (x+y) 1Eb (x−y) dy2 dx > 0.

Let I(x) be the inner integration with respect to y, and take any
x ¥ E 5 [12 (Ea+Eb)]. We have x=1

2 (ax+bx) for some ax ¥ Ea, bx ¥ Eb.
Since for sufficiently small r > 0, Br(ax) … Bd(a), Br(bx) … Bd(b), and ax, bx
are density points of E, it follows that

1
mes(Br)

I(x) \
1

mes(Br)
F
Br(0)
1Ea (ax+z) 1Eb (bx−z) dz

\
1

mes(Br)
5F

Br(0)
1E(ax+z) dz+F

Br(0)
1E(bx−z) dz6−1Q 1

when rQ 0. Thus I(x) > 0 for all x ¥ E 5 [12 (Ea+Eb)] and therefore I > 0.
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Recalling that the sets Z and Z are null sets in R3 and in R3×R3

respectively, the positivity of I implies that

F
E0Z

1F
R3
1Ea (x+y) 1Eb (x−y) 1(E×E)0Z(x+y, x−y) dy2 dx > 0.

Thus there is c ¥ E0Z such that for a null set Z (+)
c … [0,.)

F
R3
1Ea (c+y) 1Eb (c−y) 1(E×E)0Z(c+y, c−y) 1[0,.)0Z(+)c

(|y|) dy > 0.

Thus there is y1 ¥ R3 which together with c has the following properties:

(i) c ¥ E0Z; (ii) c+y1 ¥ Ea, c−y1 ¥ Eb;

(iii) (c+y1, c−y1) ¥ (E×E)0Z; (iv) R1 :=|y1 | ¥ [0,.)0Z
(+)
c .

By the ‘‘a.e.’’ conditions on Eqs. (4.16) and (4.17), these properties give the
following inequalities:

1E(c+R1Os, wP w)+1E(c+R1s−R1Os, wP w) \ 1E(c+R1s) (4.19)

for a.e. (s, w) ¥ S2×S2, and

1E(c+R1w)+1E(c−R1w) \ 1 a.e. w ¥ S2. (4.20)

Also, by |a−b|=2(R−2d), R1=
1
2 |c+y1−(c−y1)|, and v0=

1
2 (a+b), we

have R−3d [ R1 [ R−d and |c−v0 | [
1
2 (|c+y1−a|+|c−y1−b|) < d. Thus

BR1 (c) … BR(v0). Now let k(t)=t ·min {t,`1−t2}, t ¥ [0, 1]. By the
formula (4.13) (with v=c, vg=c+R1s) we have

F
S2
|Os, wP|2 1E(c+R1Os, wP w) dw

=F
S2
|Os, wP|`1−Os, wP2 1E(c+R1s−R1Os, wP w) dw

\
1
2
F
S2

k(|Os, wP|)[1E(c+R1Os, wP w)+1E(c+R1s−R1Os, wP w)] dw.
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Thus by (4.19), (4.20) and (4.14) we obtain

FF
S2×S2

|Os, wP|2 1E(c+R1Os, wP w) dw ds

\
1
2
FF

S2×S2
k(|Os, wP|) 1E(c+R1s) dw ds

=
1
4
FF

S2×S2
k(|Os, wP|)[1E(c+R1s)+1E(c−R1s)] dw ds

\
1
4
FF

S2×S2
k(|Os, wP|) dw ds=

4p
3
· 2−5/2 · 4p.

On the other hand, we compute

FF
S2×S2

|Os, wP|2 1E(c+R1Os, wP w) dw ds

=
4p
R3
1

F
R1

0
r2 F

S2
1E(c+rw) dw dr=

4p
R3
1

mes(E 5 BR1 (c)).

Therefore mes(E 5 BR1 (c)) \
4p
3 R

3
1 · 2

−5/2 and so mes(E 5 BR(v0)) \
4p
3 (R−3d)

3 · 2−5/2. Letting d Q 0 leads to the inequality (4.18).

Step 4. We prove that mes(K0E)=0. This will complete the proof
of the theorem. Since K=Ē is a ball, it needs only to show that the set
Z2 :=K°0E has measure zero. Suppose to the contrary that mes(Z2) > 0.
Then there is a v0 ¥ Z2 such that mes(Z2 5 Br(v0))/mes(Br(v0))Q 1 as rQ 0.
But the inequality (4.18) implies that for all small r > 0 satisfying Br(v0)
…K° we have mes(Z2 5 Br(v0)) [ (1−2−5/2) mes(Br(v0)). This is a contra-
diction. Thus mes(Z2)=0. L

5. TEMPERATURE INEQUALITY AND TREND TO EQUILIBRIUM

We begin by dealing with certain moment equations and inequalities.

Proposition 3. Let M0 > 0, M2 > 0, and v0 ¥ R3. Then: there exists
a unique Fermi–Dirac distribution Fa, b with coefficients a > 0, b > 0 and v0,
such that

F
R3
Fa, b(v) dv=M0, F

R3
Fa, b(v)|v−v0 |2 dv=M2 (5.1)
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if and only ifM0, M2 satisfy

M2

(M0)5/3
>
3
5
1 3e
4p
22/3.

Proof. Introduce functions (for s \ 0)

Is(t)=F
.

0

r s

1+ter
2 dr, P(t)=I4(t)[I2(t)]−5/3, t > 0.

By calculation, (5.1) is equivalent to the the following equation system for
a, b > 0

1 e

4p
22/3 P 1 1

e a
2= M2

(M0)5/3
, b=1 4p

eM0
I2 1
1
ea
222/3. (5.2)

Thus we need only to show that

d
dt
P(t) > 0 -t > 0; lim

tQ 0+
P(t)=

35/3

5
, lim

tQ.
P(t)=.. (5.3)

Differentiation under integral sign gives

−
d
dt
Is(t)=Js(t) :=F

.

0

r se r
2

(1+ter
2
)2
dr, t > 0;

and integration by parts gives I2(t)=
2t
3 J4(t),

5
3 I4(t)=

2t
3 J6(t). Thus for a

function P1(t) > 0 we have

d
dt
P(t)=P1(t){J2(t) J6(t)−[J4(t)]2}, t > 0

Applying Cauchy–Schwarz inequality we have J2(t) J6(t) > [J4(t)]2. This
proves d

dt P(t) > 0 for all t > 0. To prove the first limit in (5.3), we write
t=e−r for r > 0 and define

Ks(r)=
s+3
2

F
.

0

u
s+1
2

1+er(u−1)
du. (5.4)

Making change of integral variable r=`ru in Is(t) for t=e−r we obtain

P(e−r)=
35/3

5
·
K2(r)
[K0(r)]5/3

, r > 0.
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By splitting >.0=>10+>.1 for (5.4) and using dominated convergence
theorem, we have

Ks(r)Q
s+3
2

F
1

0
u

s+1
2 du=1 (r Q.).

This proves the first limit. The second limit in (5.3) is obvious. L

Lemma 4. Given constants 0 < p < q <.. Let f be measurable on
[0,.) with 0 [ f [ 1 and 0 < >.0 rq−1f(r) dr <.. Then

1p F.
0
rp−1f(r) dr2

1/p

[ 1q F.
0
rq−1f(r) dr2

1/q

(5.5)

and the equality sign holds if and only if there is a constant 0 < R <. such
that f=1[ 0, R] a.e. on [0,.).

Remark. As a referee commented, this lemma is a generalization of
a certain Lp-inequality. In fact if one takes f(r)=m({x ¥ W | g(x) > r})
where m is a probability measure and g is a nonnegative function in
Lq(W, dm), then this lemma is not other than the statement that the
Lp(W, dm)-norm of g is monotonously increasing in p. And also there,
equality holds only if g is a constant, which means that m({x ¥ W |
g(x) > r}) must be a step function as indicated in this lemma. For general
case, i.e., if we do not assume that f is non-increasing, the proof of the
lemma will be different from this argument.

Proof of Lemma 4. Consider

F(r)=1p F r
0
tp−1f(t) dt2

q/p

−q F
r

0
tq−1f(t) dt, r \ 0.

By 0 [ f(t) [ 1 and q/p > 1, we have

d
dr

F(r)=3q
p
1p F r

0
tp−1f(t) dt2

(q/p)−1

prp−1−qrq−14 f(r) [ 0 (5.6)

for all r ¥ [0,.)0Z0. Here Z0 is a null set. This gives (5.5) by the absolute
continuity of F and F(0)=0. Now suppose that in (5.5) the equality sign
holds. Then, since F is non-increasing, we have F(r) — 0 for all r \ 0. Let
I={r ¥ (0,.)0Z0 | f(r) > 0}. Obviously I is non-empty. For any r ¥ I, the
equality signs in (5.6) imply that p > r0 tp−1f(t) dt=rp. Since 0 [ f [ 1, this
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implies that f(t)=1 a.e. on [0, r] -r ¥ I. Thus, by assumption, the number
R :=sup I must be finite and therefore f=1[ 0, R] a.e. on [0,.). L

Proposition 4. Let f ¥ L12(R
3) satisfy 0 [ f [ 1/e and >R3f(v) dv

> 0. Let

M0=F
R3
f(v) dv, M2=F

R3
f(v) |v−v0 |2dv, v0=

1
M0

F
R3
f(v) v dv.

(5.7)

Then

M2

(M0)5/3
\
3
5
1 3e
4p
22/3 (5.8)

and the equality sign holds if and only if f is a second equilibrium (4.6).

Proof. Still suppose e=1. Let

f̄(r)=
1
4p

F
S2
f(v0+rw) dw.

Then (5.8) is equivalent to the inequality

15 F.
0
r4f̄(r) dr2

1/5

\ 13 F.
0
r2f̄(r) dr2

1/3

which does hold by Lemma 4. Also, since 0 [ f [ 1 on R3, it is easily seen
that the two equalities f̄(r)=1{0 [ r [ R} a.e. r ¥ [0,.) and f(v)=1{|v−v0| [ R}
a.e. v ¥ R3 are equivalent. This proves the proposition. L

In the following the function f in (5.7) for definingM0, M2 and v0 will
be taken an initial datum f0 of a conservative solution of Eq. (BFD). By
conservation of the mass, momentum and energy, the temperature T of the
gas (see ref. 7, Chapter 2; ref. 20, pp.43–44]) and the Fermi temperature TF
(see ref. 16, pp. 220–221 for ideal Fermi systems) can be written (with the
Boltzmann’s constant kB)

T=
m
3 kB
·
M2

M0
, TF=1

3M0

4p g
22/3 · h

2

2m kB
.
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Since e=(h/m)3/g, the inequality (5.8) is equivalent to the temperature
inequality:

T
TF
=
2
3
14p
3e
22/3 M2

(M0)5/3
\
2
5
. (5.9)

Theorem 4. Suppose the collision kernel B is given by (1.1)–(1.2).
Let f0 ¥ L

1
2(R

3) satisfy 0 [ f0 [ 1/e and ||f0 ||L10 > 0. Let f be a conservative
solution of Eq. (BFD) with f|t=0=f0. Then we have:

(1) The temperature inequality T \ 2
5 TF holds.

(2) If T=2
5 TF, then f is a second equilibrium, i.e., for all t ¥ [0,.)

and for almost all v ¥ R3,

f(v, t) — f0(v) —
1
e
1{|v−v0| [ R}.

(3) If T > 2
5 TF, then for any sequence {tn}

.

n=1 … [0,.) satisfying
limnQ. tn=., there exist a subsequence {tnk}

.

k=1 and a Fermi–Dirac dis-
tribution F, such that

f( · , tnk )E F (kQ.) weakly in L1(R3).

In particular, if f also satisfies that for some t0 > 0,

sup
t \ t0

F
|v| > R

f(v, t) |v|2 dvQ 0 (RQ.) (5.10)

(for instance f is a solution obtained in Theorem 2 for hard potentials),
then

f( · , t)E Fa, b (tQ.) weakly in L1(R3)

where Fa, b is the unique Fermi–Dirac distribution determined by the
moment equation system (5.1) with v0=

1
M0

>R3f0(v) v dv.

Proof. Part (1) has been shown above. Part (2) follows from Propo-
sition 4 (the conclusion for equality sign) and the condition that f con-
serves the mass, mean velocity and energy. To prove Part (3), we assume
e=1. Suppose tn \ 0 and limnQ. tn=.. By weak compactness of
{f( · , t) | t \ 0}, there exist a subsequence, still denote it by {tn}

.

n=1, and
a function F ¥ L1(R3), such that f( · , tn)E F (nQ.) weakly in L1(R3).
We first prove that F is an equilibrium. It is obvious that F ¥ L12(R

3),
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||F||L10=||f0 ||L10 > 0, and we can assume that 0 [ F(v) [ 1 for all v ¥ R3. By
Theorem 1, the entropy tW S(f(t)) is continuous, bounded and monotone
non-decreasing on [0,.). Thus there exist sequences {dn}

.

n=1, {yn}
.

n=1

satisfying dn > 0, yn ¥ [tn, tn+dn] such that (see, e.g., ref. 14) e(f(yn))
[ dn Q 0 (nQ.). Thus for a constant C=C(A0, b, ||f0 ||L12 ) we have
||f(yn)−f(tn)||L10 [ C|yn−tn |Q 0 (nQ.). This implies that f( · , yn) also
converge weakly to F. Next, let

D(f(t))=FFF
R3×R3×S2

B |fŒf −g(1−f)(1−fg)

−ffg(1−fŒ)(1−f
−

g)| dw dvg dv

and, in the following inequality

|a−b| [`a+b`C(a, b), a, b \ 0

choose

a=fŒf −g(1−f)(1−fg), b=ffg(1−fŒ)(1−f
−

g).

Then by Cauchy–Schwarz inequality we have for some constant C=
C(A0, b, ||f0 ||L12 )

D(f(yn)) [ C`e(f(yn))Q 0 (nQ.).

Since |Q(f(yn)) N (t)| [ D(f(yn)), this implies by Lemma 3 that

Q(F) N (t)= lim
nQ.
Q(f(yn)) N (t)=0, -t ¥ R3.

Thus Q(F)(v)=0 a.e. v ¥ R3 and therefore F is a solution of Eq. (BFD)
independent of t. By the entropy identity (1.4) we have e(F)=0. Since the
kernel B(z, w) > 0 a.e. on R3×S2, this implies that F is an equilibrium. To
prove that F is a Fermi–Dirac distribution, we need to prove

S(f(t)) [ S(F) -t \ 0. (5.11)

Let Fk(v)=(1−
2
k ) F(v)+

1
k e

−|v|, k \ 3. Applying the estimate (3.1) to
g=Fk and using dominated convergence theorem we have limkQ. S(Fk)=
S(F). Next, let kk(v)=log [( 1−Fk(v) )/Fk(v)]. Then |kk(v)| [ (log k)
(1+|v|) and

|kk(v)[F(v)−Fk(v)]| [
2 log k
k
[F(v)+e−|v|](1+|v|).
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Since yW −(1−y) log(1−y)−y log y is concave on [0, 1], it follows that

S(f(tn)) [ S(Fk)+F
R3

kk(v)[f(v, tn)−Fk(v)] dv.

Therefore, first letting nQ. then letting kQ., we obtain (5.11) by
monotonicity of the entropy. Now we assert that S(F) > 0. Otherwise,
S(F)=0, then (5.11) implies S(f(t)) — 0 on [0,.). By entropy identity
(1.4) we have e(f(t))=0 for a.e. t ¥ [0,.). Thus for some t0 > 0, f(v, t0)
is an equilibrium satisfying S(f(t0))=0 and so by Theorem 3, f(v, t0) is
a second equilibrium. Since f is a conservative solution, this implies
by Proposition 4 and (5.9) that T=2

5 TF which contradicts the condi-
tion T > 2

5 TF. This proves S(F) > 0 and therefore by Theorem 3, F is a
Fermi–Dirac distribution. Finally suppose f satisfies the condition (5.10).
To prove that f( · , t)E Fa, b(tQ.) weakly in L1(R3), it needs only to
prove that for any sequence {tn}

.

n=1 satisfying limnQ. tn=., if
f( · , tn)E F(nQ.) weakly in L1(R3), then F must be the same Fermi–
Dirac distribution Fa, b. But, we have shown that any such a weak limit F
must be a Fermi–Dirac distribution, and the condition (5.10) ensures that
the five moments of F are equal to those of f0. Therefore we conclude
F — Fa, b. L

Remark. For the BFD model, Csiszár–Kullback inequalities (2, 8, 10)

for the entropy S(f) hold for conservative solutions f and the relevant
Fermi–Dirac distributions Fa, b. For example with L1-distance we have

||f(t)−Fa, b ||
2
L1 [ 2 ||f0 ||L1[S(Fa, b)−S(f(t))], t \ 0.

[A simple proof of such inequalities is given by starting from the identity
(for convex k)

|y−x|=2 F
1

0
[(1−y) kœ(x+y(y−x)) |y−x|2]1/2

×[(1−y)(kœ(x+y(y−x)))−1]1/2 dy.

Then, for the BFD model, take k(x)=(1−x) log(1−x)+x log x (0 <
x < 1) and make use of Cauchy–Schwarz inequality and Taylor formula to
obtain an elementary inequality

|y−x| [ 2[k(y)−k(x)−kŒ(x)(y−x)]1/2 [x/3+y/6]1/2

for all 0 < x < 1 and all 0 [ y [ 1. Then choose x=eFa, b(v), y=ef(v, t),
etc.]
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But strong convergence to equilibrium as that for the original Boltzmann
equation seems a hard problem because, for instance at low temperatures
0 < T/TF−2/5 < < 1, the different equilibria Fa, b(v) and 1

e 1{|v−v0| [ R} can
be very close in L1-distance and thus the solution f with the same mass,
momentum and energy as those of Fa, b may be close (in some sense) to
both Fa, b and 1/e in different large parts of velocities. In view of (relative)
entropy methods, this may be a trouble case (see refs. 3, 17, 19 and refer-
ences therein). To see the closeness of the different equilibria, letM0=

4p
3e R

3

be fixed, and let Fa, b be the unique Fermi–Dirac distribution determined by
the equation system (5.1) where M2 > 0 is given through M0 and
T/TF( > 2/5) (see (5.9)). By (5.2) and (5.9) we have 2 · 3−5/3P(1/(ea))
=T/TF, and aQ. if and only if T/TF Q 2/5. Thus there is d0 > 0
such that if 0 < T/TF−2/5 < d0 then ea > 3. Let r=log(ea)( > 1). By (5.2)
for b and (5.4) for K0(r) and changing variable r=`ru in I2(e−r) we
compute b=R−2[K0(r)]2/3 r. Then with the identity |x−y|=y−x+
2(x−y)+ we obtain

F
R3
:Fa, b(v)−

1
e
1{|v−v0| [ R} : dv=

3M0

K0(r)
F
.

[K0(r)]
2/3

u1/2

1+er(u−1)
du. (5.12)

The integral in the right-hand side of (5.12) is not greater than
|K0(r)−1|+>.1 which tends to zero as r Q. since K0(r)Q 1 (r Q.).
Thus

F
R3
:Fa, b(v)−

1
e
1{|v−v0| [ R} : dvQ 0 when

T
TF

Q
2
5
.
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